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ABSTRACT
{
!

An in gitu reflectometer system was designed, fabricated and installed

in an existing Avco space simulation facility. After installation of the

in $itu system, qualification tests were conducted on the system. Tests
were conducted on twelve materials including combined environment of
vacuum, protons and ultraviolet, protons and vacuum only, ultraviolet and
vacuum only and vacuum only, - "Bl %ZQO/K SiO, was found to be more
susceptible to protons and less to ultravmlet radiation and the LaZO /KZS1O
more susceptible to ultraviolet radiation with very little damage by protons.
Of the powdered samples tested only the TiO, showed measurable damage
with protons only irradiation.
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INTRODUCTION

Reliable spacecraft thermal design requires a knowledge of solar
absorptance of all spacecraft surfaces exposed to outer space and
the stability of the thermal properties of these surfaces in the
total space environment. Furthermore, this information must be
obtained under conditions as near to outer space as possible, i.e.,
simulation and measurement without return to the  atmospheric
conditions.

This is borne out by the fact that during the course of work of
many investigatbrs(l"ﬂ effects were noticed which were modifying
data upon exposure of the samples to atmospheric environments.

A rapid bleaching of damage was taking place in some materials
when exposed to atmosphere. This bleaching was masking the
true results of the test and was leading to erroneous conclusions.
- In order to properly investigate the éffects of space environment,
“MWcertain improvements had to be made in the equipment. It became
3 ftapparent that an in situ capability for making reflectance
\*measurements was necessary.

Th__ei,prirnary aim of NASA Contract NASZ2-3646 was to fabricate
equipment and perform the investigation of space degradation on
selected thermal control coatings in situ. The parameters which
could be simultaneously simulated were solar electromagnetic
radiation, charged particles, ultrahigh vacuum and equilibrium
temperature. Of these, the parameters chosen as variables were
the electromagnetic radiation, proton energy and proton flux.

The first half of the contract was spent in the design and fabrication
of in sifu equipment and the last half in the performance of the

tests to qualify the equ1pment and test coating materials as prescrlbed
by NAS%

The system as fabricated under this contract was adapted to an
existing chamber at Avco/Tulsa and is described under Section III,
Test Equipment. It provides for multi-sample irradiation and
selective transfer to the integrating sphere for reflectance
measurements. In addition, during the time of fabrication of
the in situ equipment, tests were conducted of non-in $ifu type on
materials which were considered more stable. The results of
these tests are reported in the pages following the results of the
in situgstests.



II.

PROGRAM SCOPE

The program consisted of two phases: (1) Design, fabrication
and qualification of test equipment, and (2) in situ testing of
designated materials. These phases are described in the
following paragraphs.

A. Phasel - Design, Fabrication and Qualification

The scope of this portion of the program was the design

of a mechanism which would adapt to an existing vacuum
chamber and transfer four 15/16-inch diameter selective
samples from the irradiation position to the reflective
measurement position. The samplé was to operate over a
temperature range of ~100°F to 300°F position and the
samples easily removable for transfer. In addition, various
accessory items were required in order to adapt the

existing beam line and monochromator to the in situ chamber
system.

The integrating sphere was to be mounted on the end of the
vacuum chamber coated inside with magnesium oxide and
having vacuum sealed windows for light input and detectors.
This position was selected for the sphere because it was
felt that (1) it would be more difficult to feed the light from
the monochromator and optical switch into the sphere,

(2) the detectors require special consideration to prevent
outgassing problems, and (3) no vacuum tight electrical
feedthroughs through the chamber were necessary if the
sphere is on the outside.

The qualification was to consist of comparison measurements
against a Gier-Dunkle integrating sphere over a wavelength
range of 0.30 to 2.5 microns for both diffuse and specular
samples. The diffuse samples were specified as ZnO~/KZSiO3
and the specular samples as SiO_ on vapor deposited
aluminum. Five sets of measurements were required on each
sample and the mean spectral deviation determined to
demonstrate the reproducibility of the equipment.



B. Phase II - Test Program

1. Sample Materials

The materials which were selected for in situ test

were ZnO/KZSiO3, (two batches F-1-47-D and
1-11-9-13}, La203/KZSiO3 (two batches F-1-53A and
F-1-38), S$-13G, ZnO/Silicone, TiO,_/Silicone and
powdered samples of MgO, TiOz, SiZOZ,, A1203 and
LaZO3. Non-in situ radiations were conducted on SP500
ZnO powder and vacuum deposited silver on fused

silica. Test specimens are described in Table I.

2. Description of Irradiation Tests

In the majority of the in situ irradiation tests, one
sample was to be subjected to an environment
including vacuum and near ultraviolet. A second

- sample was to be subjected to a combined environment
including proton irradiation, ultraviolet and vacuum
ultraviolet. A third sample was to be subjected to
protons radiation only and the fourth sample was to
be used as a control sample and incurred only vacuum.
The following parameters were to be used in the tests:

a. Near Ultraviolet Radiation

Ultraviolet radiation on the 2000-4000 angstrom
range provided by a 5 KW xenon lamp installed

in the solar simulator for the first three tests

and a 5 KW mercury xenon lamp for all non -

in situ tests and the remainder of the in situ tests.
It was determined during the program that the
xenon lamp would provide various irradiance
values from 5.5 solar constants to 7.5 solar
constants. The Hg Xe lamp was to operate at a
rate of 10 solar constants. Total ultraviolet
exposure was to be 750 sun hours with both lamps.

b. Vacuum Ultraviolet Radiati'on

Radiation in the 1050 to 2000 angstroms range
was to be supplied by a hydrogen discharge lamp
at 10 solar equivalents of Lyman-alpha for

75 hours per test.

-3
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c. Protons

All of the tests were to be conducted with

10 Kev protons. Total proton fluxes were to vary
from 2 x 10/§15‘p‘/<‘:m to 1 x 1016 p/em”.

In some tes_:ts proton irradiations were to be
carried out at a continuous low flux rate for

75 hours, and in other tests, '"accelerated',

a higher flux rate was to be used at the beginning
of the test.

d. Sample Temperature

Sample temperatures were to be maintained near
298°K for the various tests.

e. Chamber Pressure

No test was to be initiated until pressure in the
test chamber was 10°7 torr or less.

Determination of q

s and Aas

Spectral reflectance measurements were to be made on
the samples before and after each irradiation in the non-
in situ tests and before, during, and after irradiation
in the in situ testing. Spectral reflectance curves were
to be plotted from these data.

Solar absorptance values were to be obtained by
averaging representative values of spectral reflectance
obtained from the curves for each two percent extra-
terrestial solar energy increment in the measured
wavelength range and substracting these average values
from unity. The solar absorptance values presented
will not be total valués-relating to the entire spectrum,
since this would require measured spectral reflectance
values to 3.9 microns which is beyond the measured
range of the detectors used. The values given will be
related to the measured wavelength range. ’



I11.

TEST EQUIPMENT

Avco's space simulation facility is shown schematically in Figure 1.
It consists of an ultra-high vacuum chamber with the newly designed
in situ reflectometer system, solar simulator, transition section
and Van de Graaff accelerator. The various components of the
system, beginning with the new items designed under this contract,
are described in the following paragraphs.

A.

In Situ Reflectometer Systern

The system was designed to selectively transfer any one of
four samples in the sample holder (irradiation position)

to the integrating sphere or vice versa. This may be
accomplished at pressures-of 1 x 10~7 torr or less. It was
designed to fit an existing Avco ultra-high vacuum chamber.

‘Dimensional information for the various components is given

in the appendix.

1.

Transfer Arm Assembly

The transfer arm, shown in Figure 2, (Item 19,

Figure 1), is mounted on a large flange at the side of

the chamber and a bellows provides the necessary
vacuum seal, The transfer arm is pivoted for movement
in two directions and stops are provided to prevent

over travel. The arm is coupled to a slider bar to
which is attached ""U'" shaped fingers. These fingers
will fit around a protrusion on the conical plugs on
which the sample is fastened. The slider bar slides

in a pivoted retainer mounted on arms also pivoted

at the gimball mount on the flange. When the slider

bar is caused to slide back against a spring stop,

further movement of the transfer arm causes the arm

to swing in an arc and thus turn the sample 180°. This
movement of the transfer arm in an arc of approximately
60° will cause the sample to be removed from the
sample holder and plugged in to the integrating sphere

or vice versa.

Sample Holder Assembly

The sample holder assembly which was designed and
fabricated for this study is shown in Figure 3 {Item 18,
Figure 1). It is a large copper block which has four
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~conical shaped holes-arranged in a slight vertical

arc because of the motion of the transfer arm. The
samples can be clamped to conical plugs which fit

in the holder. Threéee samples face the sources of
radiation and one, mounted in the bottom of the
holder, is shielded from these sources. Coolant
fluids can be cireulated through the sample holder

via stainless steel tubing running through an insulated
feedthrough which isolates the holder from ground.

A cartridge heater is installed in the holder for
maintaining higher- temperatures. A thermocouple

is spring loaded against the back of the sample which is
irradiated by both particulate and electromagnetic
radiation.

The samples tested are nominally 15/16-inch in diameter.
The sample area which is exposed to radiation is
13/16-inch in diameter, since the samples are clamped
at the edge. Two plates are mounted on insulating
standoffs from the face of the sample holder. The

plate farthest from the holder faces serves to collimate
the particle beam and thus define the area of sample

and sample holder which is irradiated. Two 15/16-inch
diameter holes in this plate are centered over the
samples. The charged particle beam as it is incident on
this plate is rectangular, approximately 1-1/8-inches
long x 3/16-inch wide. The beamis rastered across the
appropriate collimating hole in the plates by the sawtooth
voltage applied te the deflection plates. The collimating
plate is connected to an insulated feedthrough in the

four -inch vacuum flange and may be grounded or biased
as necessary. The purpose of the intermediate plate

is to serve as a secondary electron suppressor. The
charged particle beam passes through a short section of
tubing in this plate. The plate (and tubing) is biased
negatively with respect to the sample holder and
collimating plate to force secondary electrons arising
from particle bombardment back to their res pective
sources. Target current is read directly by connecting

a meter to the insulated feedthrough which supports the
sample holder. When samples which are good insulators,
such as the paints, are being irradiated, a grid ci;)nsisting

-10-



of five parallel strands of one mil stainless wire is
mounted in contact with the sample surface. This

grid masks less than one percent of the sample area

and serves to prevent the sample surface from

becoming electrically charged with consequent ‘‘chasing"
of the particle beam and inaccurate beam current readings.

)

3. Integrating Sphere

The integrating sphere-is shown in figures 4 and 5 (Item 20,
Figure 1). It was fabricated from two stainless steel
hemispheres to which were welded mounting flanges to
mount on the-chamber. It has three ports, one for the
sample, one for the detector and one for the light from

the Perkin-Elmer Model 112U spectrophotometer. It is
coated inside with magnesium oxide and a baffle is

mounted inside the sphere to prevent the light from the
sample from seeing the detector directly.

Vacuum Chamber

The Avco ultra-high vacuum chamber is shown schematically
in Figure 6 (Item 17, Figure 1). It has a normal working
volume of 24" x 24" in the form of a right circular cylinder.
This chamber has a ratio of total volume to useful volume of
approximately 90%. The chamber was fabricated and welded
with low carbon stainless steel. Ports entering into the vacuum
chamber itself are metal gasketed and are 10.75" in diameter
for access purposes or 1.5" in diameter for instrumentation.
In addition, a four-inch port is provided for electrical feed-
throughs. The chamber is pumped with 900 liters/sec of
cold cathode ion getter pumping system. The system is
comprised of a high voltage source, a magnet assembly, and
two active pumping element assemblies. The magnetic field
in the region of the pump cells is approximately two kilogauss
provided by the magnet assembly. The chamber is a double
wall chamber and the annulus between the cylinders, except in
regions taken up by feedthroughs and flanges, serves as a
passage for liquid nitrogen or other coolants to provide cold
surrounds and some cryogenic pumping if desired.

Van de Graaff Accelerator

The accelerator (Item 3, Figure 1) is capable of accelerating
positive ions or electrons in the energy range from about

~11-
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P

10 Kev to 500 Kev. The Van de Graaff voltage generator is
used from about 500 Kev down to 100 Kev, below which point
the voltage stability becomes poor. Energies below 100 Kev
are provided by disabling the Van de Graaff voltage generator

/in the accelerator and connecting an auxiliary 0 - 100 kilovolts
¢ power supply across the acceleration tube. Positive ions are

generated by an R.F. ion source. The accelerator is pumped
by a four-inch oil diffusion pump’containing Dow Corning 705
diffusion pump oil. A Freon cooled baffle prevents migration
of oil into the system. Basic pressure in the accelerator is
about 107° torr as measured by a Phillips ionization gauge
and pressur e during operation is in the 0.6 - 1 x 107° torr
range.

The accelerator is equipped with an ahal‘yzing magnet to
provide mass analysis of the ion beams. The analyzed beam
which is used is bent at an angle of 45° to the accelerator axis.

Transition Section and Beam Scanner

After leaving the analyzing magnet, (Item 7, Figure 1), the
beam passes through a glass cross (Item 9, Figure 2). Within
the cross a monitor, consisting of a Vycor disc covered with
a stainless steel screen, can be positioned to intercept the
beam. This provides a beam current readout at that point and
also a visual observation, since the glass fluoresces when the
ions or electrons impinge upon it.

The accelerator and chamber are separated by a differentially
pumped section to isolate the ultra-high vacuum region of the
chamber from the moderately high vacuum region of the
accelerator. The differentially pumped section is terminated
at either end by rectangular slit orifices which help to limit
gas conductance, and also serve to collimate the charged
particle beam prior to entrance into the beam scanner.
Pressure in the differential section is normally about 1.5
orders of magnitude lower than that in the accelerator.
Pressures in the chamber are normally in the 1078 to 10~
torr range during operation. '

10

The beam scanner consists of a pair of electrostatic deflection
plates. The collimated beam passes between these plates and
is moved to sample center by application of a d.c. bias and -
then ''rastered’’ across the required area by means. of a low
frequency sawtooth voltage applied to the plates.

-13-



Solar Simulator

The solar simulator utilizes a 5 kilowatt short-arc lamp,

either xenon or xenon-mercury to simulate the solar spectrum.
The light from the simulator is beamed through a quartz window
in the port (Item 14, Figure 1), and reflected from an aluminized
front face mirror onto the samples. The lens system in the
simulator provides for focusing the light such that with the end
of the simulator barrel about one-fourth inch from the guartz
window flange, a uniform three-inch diameter beam is obtained
at a distance of 14 inches from the mirror. Total intensity
was expected to be in excess of ten solar constants with either
type tube. However, it was not possible to achieve ten solar
equivalents in the 0.2 - 0,4 micron range with the Xe lamp

so that the Xe-Hg lamp was used for the balance of the study.

Lyman-Alpha Source

The vacuum ultraviolet source of Avco design is essentially a
Penning discharge tube with water ~-cooled anode and cathodes,
Light from this source is beamed through a lithium fluoride
window onto the samples. The source provides energy in the
0.105 to 0.2 micron range. With hydrogen gas it is essentially
a line source with the Lyman-alpha line at 1216 A as the most
prominent. The port for the source is shown in Figure 1,

Item 13. o

Reflectance Measuring Apparatus

Reflectance measurements are made with a Perkin-Elmer
Model 112-U spectrophotometer attached to the Avco designed
integrating sphere. A-Pek Model X-75 xenon lamp and
Gier-Dunkle Model RXS-1 power supply were obtained to provide
sufficient intensity for reflectance measurements below 0.4
‘microns. A tungsten lamp is used for measurements at longer
wavelengths.

Non-In Situ System

for non-in situ testing has been used in performance of other
contracts and is adequately described in previous reports.

~14-



IV. EQUIPMENT CALIBRATION AND EVALUATION

A. In Situ Reflectometer System.

~Evaluation of the in situ reflectometer was performed by
comparing spectral reflectance measurements in the in situ
integrating sphere with measurements in the Gier-Dunkle
AIS-6 integrating sphere for a ZnO/K281O sample and for

SiO on vapor deposited aluminum. Five sets of spectral
refféectance measurements were made on each sample to

check repeatability of the equipment. The attached tables
show the measured values obtained in the Gier-Dunkle

sphere and in each of the five sets of measurements in the

in situ sphere, the averages of the five sets of measurements,
and the maximum deviation from the average at each wavelength.
Measurements are presented only over the wavelength range
measureable with a tungsten lamp because of problems with
the xenon lamp power supply.

Figures 7 and 8 present comparative spectral reflectance
" curves for the two spheres for the ZnO/K251O3 and SlO on
vapor deposited aluminum respectfully,

B. Particle Energy and Flux

Particle energy is essentially determined by the potential

drop across the acceleration tube in the accelerator. When

the Van de Graaff voltage generator is being used, the

generating voltmeter on the Van de Graaff has been calibrated

to read directly the particle energy The calibration was
performed as follows:

The particle beam from the-accelerator after collimation

by the orifice slits passes between the electrostatic deflection
plates of the beam scanner. The beam was permitted to fall
on a Pyrex window and the resultant fluorescense marked the
position of the bearmn. By applying a d.c. potential to the
deflection plates the beam was moved to a different position.
The accelerating potential was determined from the well
known equation

v = 1d Vvd
Z2tx



TABLE II
Comparison of Measurements in
In Situ Sphere With Those in Gier-
Dunkle Sphere at Atmosphere
for ZznO/KZS‘iO3

Spectral Reflectance

‘Wavelength Gier - In Situ Sphere Max. Deviation
{Millimicrons) Dunkle 1 2 3 4 5 Ave. From Average

390 63.5 63.4 63.0 64.6 64.3 62.9 63.6 4 1.0
400 78.4 77.1  75.7 76.4 76.2 16.5 76.4 9% 0.7
410 82.6 81.7 81.7 81.6 80.7 81.5 8l.4 0.7
420 86. 0 85.5 84.4 84.4 81.7 85.1 84.2 i.3
430 88.0 85.8 86.3 86.4 89.1 87.2 87.0 2.1
440 89.8 88.2 87.7 89.3 88.4 87.7 88.3 1.0
450 90. 6 89.7 89.2 89.4 88.1 89.3 89.1 1.0
460 91.8 90.4 89.6 90.1 91.2 89.7 90.2 1.0
470 92. 1 91.0 89.9 90.4 90.8 90.0 90.4 0.6
480 92.5 90.3 90.3 90.7 91.2 90.7 90.6 o , 0.6
490 93.6 91.1 91.7 91.9 90.9 91.5 91.4 § 0.5
500 94. 6 91.2 91.5 92.0 91.9 91.6 91.6 0.4
510 93.8 92.4 91.8 92.8 93.3 92.2 92.5 0.8
520 94.1  93.1 93.2 93.5 92.6 93.1 93.1 & 0.5
530 94.5 91.7 93.5 93.0 91.8 93.2 92.6 M 0.9
540 94.5 92.8 92.1 92.8 92.7 93.8 92.8 1.0
550 94.3 91.3 92.0 93.5 93.2 93,5 92.7 1.4
560 94.6 91.7 93.2 93.8 92.3 93.6 92.9 1.2
570 94. 6 92.8 93.5 93,2 93.7 93.9 93.4 0.6
580 94. 8 93.2 93.9 92.5 93.8 94.1 93,3 0.8
600 94, 4 93.3  92.9 93.3 92.7 93.7 93.2 0.5
630 94. 8 93.4 93.8 94.3 93.9 94.7 94.0 0.7
660 95.3 92.5 93.5 93.7 94.4 92.9 93.4 1.0
600 95. 9 92.2 92.4 93.2 92.8 93.4 92.8 0.6
630 95. 1 92.4 91.9 92.5 93.5 93.0 92.7 A 0.8
660 95.1 92.4 92.1 92.9 92.3 93,4 92.6 | 0.8
700 95.3 93.4 92.4 92.4 93.2 94.1 93,1 1.0
750 94.9 92.9 92.8 93.7 92.7 93.2 93.1 0.6
800 94. 4 93.1 92.3 93.6 92.3 93.9 93,0 0.9
900 94. 1 92.0 92.4 93.1 92.4 92.9 92.6 0.6
1000 93. 4 89.6 92.0 93.5 91.2 91.7 91.6 2.0
1100 92.5 91.7 91.7 92.2 91.8 92.3 91.9 0.4
1200 91.8 92.3 91.0 91.7 91.9 90.5 91.5 ~ 1.0
1300 91.2 90.4 91.2 90.0 90.1 90.4 90.4 © 0.8
1400 90.3 89.2 88.5 88.9 88.6 88.5 88.70Y 0.5
1500 87.9 87.5 88.2 88.3 88.4 87.7 88.0%© 0.5
1600 86.7  86.7 87.0 86.4 87.4 86.2 86.7h 0.7
1700 85.2 84.9 85.0 85.2 85.9 85.5 85.3 0.6
1800 82.5 82.5 83.0 83.4 82.7 83.7 83.1 0.6
1900 78.9 78.9 79.4 79.1 78.7 79.5 79.1 0.4
2000 75.7 75.4 75.4 75.8 76.3 715.2 75.6 0.7
2100 74. 6 74.8 74.9 74.9 74.4 75.8 75.0 | . 0.8
2200 73.0 73.2  73.3  73.2 73.5 74.1 73.5 0.6
. 2300 68.8 68.6 68.7 68.7 68.3 68.8 68,6 0.3
2400 64.2 64.1 63.7 63.9 63.4 63.8 63.8 0.4
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TABLE III

Comparison of Measurements in
In Situ Sphere With Those in Gier-
Dunkle Sphere at Atmosphere
for SiOx on Vapor Deposited Aluminum

Spectral Reflectance e
Wavelength Gier- In Situ Sphere Max. Deviation
(Millimicrons) Dunkle 1 2 3 4 5 Ave. Frog Average
390 47.5 45.1 43.9 44.6 44,1 44.4 444 | 0.7
400 50.2 46.2 45.3 46.6 46.2 46.2 46.1 0.8
410 51.4 47.2  47.9 47.9 48.2 48.0 47.8 0.6
420 52.9 49.5 49.9 50.4 49.6 50.2 49.9 0.5
430 52.9 51.8 52.0 51.5 51.1 53.5 52.0 1.5
440 ' 54.7 52.9 53.5 53.6 53.3 53.7 53.4 0.5
450 56.4 54.0 55.2 54.7 55.2 54.5 54.7 0.7
460 57.8 55.8 55.8 56.4 56.5 56.5 56.2 0.4
470 58. 8 56.4 57.2 57.3 56.9 57.6 57.1 4 0.7
480 60.5 57.5 58.5 59.1 59.0 58.8 58.6 8 . 1.1
490 62.2 60.0 59.9 60.5 60.3 60.1 60.2 & 0.3
500 ; 64.6 61.2 61.9 61.8 61.4 62.3 61.7 . 0.5
510 % 66.3 63.0 63.2 63.3 63.3 63.7 63.3 3 0.4
520 66.6 64.4 65.0 64.4 64.8 64.4 64.6 . ¢ 0.4
530 66.8 64.8 65.4 66.0 65.3 65.8 65.5 M 0.7
540 67.9 65.4 66.7 66.0 65,8 66.6 66.1 | 0.7
550 68. 1 66.4 67.0 66.6 67.1 66.7 66.8 | 0.4
560 68.9 67.5 68.2 67.0 67.7 66.9 67.5 0.7
570 69. 4 67.5 68.0 68.1 67.8 68.5 68.0 0.5
580 70.2 68.4 69.5 68.8 68.9 68.6 68.8 0.7
600 71.1 68.7 69.2 68.6 69.8 69.1 69.1 0.7
630 72.5  69.6 70.0 70.3 70.1 70.3 70.1 * 0.5
660 73.7 69.7 71.3 70.7 70.4 71.1 70.6 0.9
600 71.3 67.2 69.2 67.3 67.4 68.2 67.9 A . 1.3
1630 72.3 67.9 68.7 69.2 68.6 68.7 68.6 0.7
660 73.8 69.1 69.1 70.2 69.7 70.9 69.8 1.1
700 74.3 69.3 70.0 70.1 69.4 70.3 69.8 0.5
750 72.9 68.5 69.7 69,2 69.2 68.4 69.0 0.7
800 71.4 66.5 67.3 67.4 67.4 67.3 67.2 0.7
900 80. 0 75.6 75.6 75.8 15.6 75.2 75.6 0.4
1000 87.9 82.3 82.9 83.2 82.6 83.5 82.9 0.6
1100 90.9 84.0 84.9 85.9 85.0 85.4 85.0 0.9
1200 93. 0 85.8 87.8 87.7 86.4 87.4 87.0 3 1.2
1300 93.8 88.7 89.0 88.1 87.8 87.8 88.3 ¢ 0.7
1400 93.9 88.0 88.4 88.4 87.4 87.2 87.9 0.7
1500 94. 8 88.0 89.0 88.9 89.4 88.8 88.8°7 0.8
1600 95.3 89.8 90.2 90.8 89.8 90.3 90.2 p 0.6
1700 95.2 90.7 91.5 91.0 90.5 90.8 90.9 0.6
1800 95, 4 90.1 91.0 91.7 91.4 91.6 91,2 . 1.1
1900 95.3 91.0 91.8 92.0 91.9 91.5 91.6 0.6
2000 95. 4 90.5 92.0 91.9 92.0 91.9 91.7 S 1,2
2100 95.8 91.8 93.1 92.9 92.2 92.2 92.4 | . 0.9
2200 95.9 92.2 92.4 92.4 91.7 91.3 92.0 0.7
2300 95.5 89.5 90.1 89.9 89.8 90.6 90.0 0.6
2400 94.9 89.8 90.4 90.1 89.8 90.0 90.0 0.4
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where V p is the accleration voltage, 1 is the length of the
deflection plates, d is the distance from the center of the
plates to the glass window, Vg is the applied deflection
voltage, t is the spacing between the plates, and x is the
distance the beam was-moved on the window. ‘

The calibration was made at several accelerating potentials
to accurately calibrate the readout meter.

When the auxiliary power supply is used, the reading from
the meter on its control panel is used to determine the
particle energy, i.e., a 10 kilovolt potential produces

10 Kev particles. This is not strictly true in the case of
positive ions since in addition to the potential across the
acceleration tube, the ions are given an initial acceleration
to extract them from the R.F. ion source by application of
a relatively low potential to the source probe. However,
the total energy of the particles is known to within ten
percent.

Charged particle flux is readily determined due to the
geometry of the sample holder. As described in Section

III. A.2, the collimating plate mounted in front of the

sample holder defines the area, A, of the sample and sample
holder which is irradiated. The average current striking
this area is directly measured by connecting a meter from
the sample holder to ground. If this current, I, is noted

in amperes, the flux is given by

%\ x 6.25 x 1018,; particles/cmz/sec

When a certain flux is required it is, therefore, simple to
determine the required beam current and adjust the
accelerator accordingly. The method used in adjusting for
the desired current is to adjust for a current on the monitor
in the glass cross section which will yield approximately

the proper target current and to make final minor corrections
after the beam is on target.

The target current is recorded on a strip chart recorder
throughout the tests. The current is sufficiently stable that
the total integrated flux in particles/cm™ striking the samples
during a test is known within an estimated fifteen percent.

-20-



E.

Solar Simulator Calibration

The solar simulator was calibrated by duplicating the vacuum
chamber geometry on a work bench, Spectral calibrations

were made using a monochromator calibrated with an NBS
standard quartz-iodine lamp, thus providing quantitative
spectral intensity data. The ellipsoidal collecting mirror which
was provided for the simulator was coated with an aluminized
coating. Figure 9 compares plots of simulator spectral
intensity with a Hg Xe lamp and using the aluminized collector
with a plot of solar extraterrestrial spectral *intensity according
to Johnson. 8. An analysis of the curve for the aluminized
collector in Figure 9 shows that with 10 solar equivalents

below 0.4 microns there were approximately 2.5 equivalents
between 0.26 and 0.28, and 15 equivalents in the 0.26 to

0.30 micron range. These measurements were made with a
new Xe-Hg lamp in the simulator.

Vacuum Ultraviolet Calibration

The vacuum ultraviolet light calibration was made with one
centimeter nickel discs mounted at the sample positions in the
sample holder, and with a nitric oxide ionization cell with a
lithium fluoride window also at saimple position. The nickel
discs serve as photoelectric detectors. With a negative bias
applied to the discs, the photoelectrons, which are generated
primarily by Lyman-alpha photons, are ejected and the
current is proportional to the light intensity. A quantum
efficiency of 2.5 percent was assumed “5'0: the nickel based

on data of Hinteregger and Watanabe. v The overall quantum
efficiency of the NO cell obtained from G.B.L. Associates
was not known. Dunkleman (") states that efficiencies range
from 10 to 50% for similar detectors.

A loop of 10 mil nickel wire permanently mounted close to

the light source was cross calibrated to provide continuous
monitoring of light intensity during the tests.

Non-In Situ System

Calibration of this system is adequately described in
previous reports.
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TEST PARAMETERS AND RESULTS |

A compilation of all the sample materials, environmental parameters
and values of a  and Aq, of the in situ tests are included in Table IV.
Two values of Aggare presented, Ao is the change at the end of the
accelerated radiation, and Aa is t]he change at the end of the test.
The proton energy for each t‘e'sg‘:vas 10 Kev, the sample temperature
was maintained at room temperature and the chamber pressure was
10"7 torr or less for every test. These items are not tabulated.
Except in the tests with the xenon lamp which is given the near and
vacuum, ultraviolet was applied at a rate of 10 solar equivalents for
a total of 750 sun hours of electromagnetic radiation. This was
chosen because it had been previously shown in non-in situ testing
that this was about the minimum necessary to cause measurable
optical damage to ZnO,/K,Si©3 samples.

A total integrated proton flux of 2 x 1015 p/cmz was selected in the
majority of the tests. In one test a total integrated flux of

1x 101 p/crn2 was selected in order to determine if additional
proton damage could be detected. In order to determine if a rate
effect existed, some tests were conducted at an accelerated rate
approximately 100 times the continuous rate. In the accelerated
tests, the flux was applied for approximately one hour in order to
obtain the same total integrated flux as in the continuous irradiation
tests. Reflectance measurements were made on the samples in situ
and were made at various times during the irradiation. The
reflectance measurements were made over the range .34 to 2.4
microns. '
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VI. DISCUSSION OF RESULTS

A.

In Situ Tests N

Sixteen exposure tests were conducted on various samples
in which reflectance measurements were made in situ.
Four samples were included in each test.

A sample exposed to vacuum, controlled temperature,
and solar simulation,

A sample exposed to vacuum, controlled temperature,
solar simulation and protons.

A sample exposed to vacuum, controlled temperature
and protons.

A control sample exposed to vacuum and controlled
temperature.

Proton exposures were conducted with a pure beam of 10 Kev
protons.

1.

Xenon Lamp

Three exposure tests were conducted on ZnO/KZSiO

‘samples in which reflectance measurements were made

in situ. Solar simulation for the tests was provided by
a simulator using a 5 kilowatt {§;enon lamp, Spectral
irradiance was to have been at a level of 10 solar
equivalents of near ultraviolet. However, this level
could not be attained so the highest levels attainable
were used. Proton exposures were conducted with a
pure beam of 10 Kev protons. All tests were conducted
at 2 nominal temperature of 298°K as measured by a
thermocouple in contact with the sample rack.

For the first test, simulated solar irradiance at sample
position was approximately 5.5 solar constants with 3
solar equivalents in the near ultraviolet. Proton flux
was greater than planned because of an error in current
readout and because the beam narrowly missed one edge
of the samples due to a misalignment in the beam line.
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Proton flux was approximately 1.1 x 1012 p/cmZ/sec
and the integrated flux was 5.3 x 101° p/cm®. Because
of the error in the proten flux, the test was stopped
immediately after the proton irradiation.

Figures 10 and 11 show the change in spectral
absorptance for the sample irradiated only with protons
and for the sample exposed to the combined environment.
The change in solar absorptance was . 082 for the
former and . 063 for the latter. Changes are based

upon pre-exposure measurements made in vacuum.

For the second test spectral reflectance measurements
were made on each of the four samples before evacuating
the test chamber and again about 24 hours later at a
pressure in the 1079 torr range. The primary result

of the vacuum environment was to increase the
reflectance of the samples by approximately 2%

in the wavelength range of 1.6 to 2.4 microns.

The solar irradiance was the same at the beginning of this
“test as in the first test. The proton flux was to have been
5.5 x 1011 p/cmzfsec for one hour to obtain an integrated
flux of 2 x 1013 p/cm®. However, a problem in the proton
beam scanning supply caused the beam to miss the

sample exposed only te protons for a part of the
irradiation period. After stopping the test it was found
that the aluminum surface had evaporated from the mirror
which reflects the light from the solar simulator onto the
samples, This mirror is located in the vacuum chamber
and could not adequately dissipate the heat from the
absorbed infrared radiation.

Figure 12 is plotted from data taken for the sample
exposed to the combined environment, since this sample
was uniformly irradiated even though the proton flux

and solar exposure cannot be accurately evaluated.

The curves in Figure 12 are based upon changes from
the pre-exposure spectral reflectance measurements in
vacuum. The solid curve shows the change in spectral
absorptance induced by the radiation from data taken
immediately following proton irradiation. An absorption

-28~
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band was induced from .31 to .55 micron and another
above 1 micron. The data taken about 24 hours later
shows a recovery of infrared damage even though
chamber pressure was less than 10-9 torr. The
recovery is not an effect of the solar radiation since
the sample which was exposed only to protons
exhibited the same recovery; nor was it a continued -
effect of vacuum since the control sample did not
exhibit any further change following the initial
measurements in vacuum. The other curve shows
an increase in infrared reflectance following return
of the chamber to atmospheric pressure.

Pre-exposure spectral reflectance measurements were
made both in air and vacuum for the samples used in
the third test and they exhibited the same increase in
reflectance in the infrared as had the previous group.

The test was set up for a proton flux of 3.2 x 107 p/cmz/sec
and an integrated flux of 2 x 101° p/cmz. With a new
mirror with a somewhat improved heat sink installed

in the chamber the solar irradiance at sample position

as measured with a pyrheliometer was 7.5 solar constants
with 4.3 solar equivalents in the near ultraviolet. When

the test was stopped after what should have been 750 sun
hours of ultraviolet exposure, it was found that the
aluminum had evaporated off the new mirror. ’

Figure 13 shows an effect of the solar radiation. The
solid curve is from spectral reflectance measurements
made immediately after shutting the radiation off the
samples after approximately 48 hours of exposure.
The sample was exposed only to solar radiation. The
dashed curve is from measurements made when the
radiation had been off for 2 hours, on for 40 minutes,
and then off for 3-1/2 hours. The radiation apparently
caused a decrease in reflectance primarily around

the absorption edge but in a short period of time after
blocking off the radiation the absorption peak '
disappeared. At the end of the test, this sample
‘exhibited considerable more optical damage than would
have been expected even from a full 750 sun hours of
near ultraviolet, A check showed that the samples
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were not seating properly in the sample holders.
Thermal transfer was probably inadequate to keep the
samples exposed to the simulated solar radiation
from heating. - The transient absorption peak was an
anomalous result and was never reproduced.

The sample which was exposed to the combined
environment suffered more damage than the sample
exposed to protons. This was in contradiction to the
results of previous tests of ZnO/K Si0, when the
samples were maintained at the same temperature and
is a further indication that the samples exposed to the
solar radiation may have been considerably warmer
than the other two samples.

Figures 14 and 15 show changes in spectral

absorp tance caused by proton exposure and by combined
proton and solar radiation exposure respectively.

The three curves represent the change which had
occurred at various stages of exposure. Changes in
solar absorptance are noted on the figures.

Mercury Xenon Lamp

Thirteen exposures were conducted on the various
materials using a 5KW Mercury Xenon Lamp in the
solar simulator. The results of these tests are
discussed in the following paragraphs based upon the
environmental parameters selected. The curves which
accompany show only changes in spectral absorptance.

a. Zinc Oxide/Potassium Silicate

Two batches of zin¢ oxide potassium silicate
were tested, F-1-47-D and 1-11-9-13. Effects
of the individual irradiations as well as the
combined environment are discussed below.

1. Proton Effects

The effects of proton radiation only are
shown in Figures 16 and 17 for the
F-1-47-D Z]:@.@./KZS:'LO3 and Figure 18

-3 4.
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shows the effect on the 1-11-9-13
ZnO/KZSiO . Greater damage is
observed in the infrared region due to
the continuous proton radiation than

with the accelerated flux indicating a rate
effect. Also shown in Figure 16 is a
slight bleaching effect in the infrared
region for the sample which was irradiated
at the beginning of the test and remained.
in vacuum while the other samples were
irradiated with ultraviolet. Figure 17
also shows this effect. In Figure 17, the
effect of increasing the proton flux 2-1/2
times is shown and allowing the sample
to remain in vacuum for a specified
period of time.

Figure 18 shows the effect of proton
radiation only to the 1-11-9-13 material
and again remaining in vacuum after
irradiation. Again, the bleaching effect
may be noted,

Ultraviolet Damage

Figure 19 shows the effect of uliraviolet
radiation on the F-1-47-D ZnO/K,;SiO
material. ‘In both tests the ultraviolet
was applied at a rate of 10 suns. The
damage was less than 5% in the near
ultraviolet, visible and infrared region
as may be seen from this figure. Results
were essentially the same for two
separate runs on this material.

Combined Effects

The combined effegts of proton, vacuum
and ultraviolet environment are shown in
Figures 20, 21, 22, and 23,

Figures 20 and 21 show a comparison
between the combined radiations on one
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sample and the algebraic sum of the
individual irradiations on the other two
samples for two separate runs of high and
low -proton flux. Figure 22 shows a
comparison between the combined
environment of vacuum, ultraviolet and
protons of low and high flux rate.

Figure 23 shows the effect of ultraviolet
radiation and vacuum on a sample irradiated
with protons at the beginning of a test and
comparing the change in spectral absorptance
from the irradiation measurement to the

end of the test.

b. ZnO/Silicone-
1. Protons

The effects of proton radiation are shown

in Figures 24 and 25. The characteristic
curve for ZnO susceptibility to proton
damage is depicted. The effect of the
accelerated protons is almost identical to
that produced by the continuous low current
indicating no rate effect. A slight difference
is observed in the height of the change of
absorptance which is greater for the
continuous current. Also shown by Figure 24
is that the ZnO/Silicone showed a bleaching in
the IR due to remaining in the vacuum
chamber for approximately 74 hours. The
effect of increasing the total proton flux to

1 x 1016 p/'c:rn2 is shown in Figure 25. The
peak change in absorptance was almost
doubled with approximately 5% greater
damage in the IR range.

2. Ultraviolet Effects

The effect of ultraviolet radiation on this
material is shown in Figure 26. It shows
very little damage with a slight absorptance
peak near .4p and less in the infrared than
the ZnO/Kp5i0,. Both runs on the materials
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produced almost the same results as
shown in this figure.

Combined Effects

The effects of the combined environment
are shown in figures 27, 28, 29, and 30,
Figures 27 and 28 show the comparison
between the sum of the individual
environment and the combined environments
for both the high and low currents.

Figure 29 shows that the absorptance peak
around .4y was considerably greater for
the continuous low current with approx-
imately the same damage in the IR range.
Figure 30 shows a greater change in
spectral absorptance around .4p for the
ultraviolet radiation than was effected in the
ZnO/XK,8i0,.

Lanthanum Oxide/Potassium Silicate (F-1-53)

1.

Protons

Figure 31 shows the effect of proton radiation
on this material and the subsequent effect
of exposure to a vacuum. Proton damage
was very slight with practically no change
due to vacuum exposure after irradiation.

Ultraviolet Eifects

750 sun hours of ultraviolet and Lyman-alpha
radiation produced the greatest damage to
this material as shown by Figure 32. The
effect was an absorptance peak in the near
ultraviolet portion of the spectrum with a
trailing off through the visible to practically
no damage in the IR range.

Combined Effects

The effects of combined environment are
shown in Figures 33 and 34. The algebraic
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sum of the individual damage very nearly
equalled the combined environment damage.
Figure 34 shows that practically all of

the damage to the material in the combined
environment was due to the solar electro-
magnetic radiation. '

Lanthanum Oxide/Potassium Silicate (F-1-38)

1.

Protons

The effect due to proton radiation onlly ‘
‘is shown in Figures 35 and 36. This was.

‘a different batch of Lanthanum Oxide/ .

Potassium Silicate, however, it -showéd
practically the sarne effect due to protons
as did the F-1-53 material. Increasing the
total proton flux by five times produced
very-little more damage as shown by
Figure 36.

Ultraviolet Effect

The absorptance peak produced by the
electromagnetic radiation was considerably
greater in this batch of Lanthanum Oxide
(F-1-38) than in that reported in the
previous paragraph/(b"s 1-53). This is
shown in Figure 37. Damage in the IR
range was again practically zero as before.

Combined Environment

The effects of combined environment are
shown in Figures 38 and 39. The principal
damage is seen to be due to the electro-
magnetic radiation with the algebraic sum

very nearly equalling the combined damage.

-50 -



‘ ) (8¢-1-4)
mOMmNM\mONmA 1§97 JO PUd jB pu® UOIJRIpPEI I9}je AlajBIpaurwul
- U2 IIND PIRII[IDIDY - AJuo uorjeipes uojouad jo 3093 -- G¢ andrg

(suoaotwr) yduajasem

2°? 0°¢ 8°1 9°1 LA 21 0°T 8" 9° Ve

I 1 1 ] | | | P ] '
‘I‘““‘""""" /
p——— T mose—~eo ..
!

winnoeA Ul UOTIRIPBIIL I33J SINOY Pl —em = —

uom\mcnu\a (101 ¥ 276 e NEu\m cf01 % 2
03 aansodxa 123jje A]3jeIpaUW] e

1 1 L 1 | L 1 1 | i

0T

Gl

0¢

K4

0¢

(%) 2oueidrosqy jeiivadg ur aluey)d

-60-



(8¢-1-4) forsus fole

- N&U\a foﬁ X 1 3o xnyy uojoad [e303 3o 309JJq -- 9¢ 2andr g
(suoaotwa) ySuajsaem
4 22 0°¢ 8°1 9°1 ¥ (A 0°1 8" 9° 1
| | I [ | 1 ! I i |
do9s/ wo/d 01 X G*G j®e
- £ 11
_Ngu\a 9101 X1 xn[j vojoxd TejoL
, Jas/_wd/d _ 0] X G°g e
4 1T
= Nrcu\n_ g101 X 2 xny3 uojoid {B30L ——— —
| | | | ] | ! | ] 1

0¢

01

61

52

0¢

( % ) sdouediosqy [eax3dadg ur a8uey)

-61-



(8e-1-I) mOMwNM\mONmA - A[uo uoryerpex AN jo 109K -- L¢ 2andig

{suoxotwa) yBuajssepm

v'e 2°¢ 0°2 81 91 Pl 271 0t 8" 9- i
] | | I 1 I 1 ] i !
. i\ . ° - T
o
Ty
+
- ‘Al WNNO®BA pue ILLdU sanoy uns g
| l 1 i 1 | 1 | 1 i

0t

S1

0¢

62

0¢

{ % ) souridaosqy [eIldadg ur aduey)d

62 -



(ge-1-4) fors%/folet
- §}09JJ9 [BOPIAIPUL JO WUAE SNSISA §}D9JJ° pauIlquIo)) -- g¢ aanJr g

(suoadtwi) yiduaiaaem

2°2 0°¢ 81 9°1 LA 21 0°1 8’ 9’

! I ) MR I | |

KA

L wo/d

‘SJUIWIUO ITAUS [BNPIAIPUL JO WING = — —

*AQ lUNNUBA pUB JBIU SINOY
uns (gL P98/ Mid/d (01 X 276 I®
G01% 2 e liunITalud pauiquIo))

01

ST

0¢

62

0¢

(% ) s>ueidiosqy [eaidadg ut a8uey)

-6 3-



(8¢-1-a) Fog%u/folet
- 3833 Jo pu@ je pue 2a1nsodx3 uojoxd pajeIa[adde
19338 A[9JRIPIWWI JUIUWIUOIIAUS PIUIQUIOD JO JI3JJH -~ ¢ 2andig

(suoaotwa) yiBuaiaaepm

V¢ 22 0°2 8°1 9°1 1 1 0°1 8- -9 ¥ Z°
1 1 1 _ T 1 _ T _
. /\
I .
N
N
e N e
\
\
N\
\
\
f— / —
\
\
\
\
\
. \ —
— \
\
/
*Al WNNOeBA put IBIU SINOY uUNs g/ /
- 0} aansodxa I3]je JUSIUWUOILAUD PAUIGUIOD) = = — — . / —
: \
. \
umm\NEu\m 1101 ¥ 29 /
je NEU\Q 10T ¥ 2 sansodxa uojoxd .’
= I931Je A]a1EIPIUIUIT JUSLIUOITAUS pauUIqUIO ) -
! 1 ] | | | ] ] d |

g]

o
—

wn
~—~

o
~
( % ) @2oueidaosqy [ex}Dadg ur aduey)

wn
o

0¢

-64 -



S5-13G

1, Proton Effects

The effect of proton radiation on this
material is shown in Figure 40. The
material showed the characteristic

damage curve for ZnO with about the ;
same effects as the ZnO/Silicone irradiated
with continuous low current.

2. Ultraviolet Effects

The effect of ultraviolet radiation only is
shown in Figure 41, The change in solar
absorptance is greater around .4 micron
than the ZnO/Silicone or the ZnO/K Si0,
with virtually no damage again in the IR
range. '

3. Combined Environment Effect

The effect of combined environment
simulation is shown in Figure 42. Bleaching
of the proton damage in the IR range has
apparently occurred.

T iO2 Siliqone

These tests were conducted in order to
compare the results of in situ testing of TiO
Silicone with the work of Pinson ) which was
conducted non-in situ.

1. Proton Effects

Figure 43 shows the effect of proton
radiation on TiOZ/Silicone. It has the
characteristic peak of ZnO but does not
return to near zero in the visible range
as does the ZnO. This material received
1-1/2 times more total proton flux than
did the other materials.
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2. Ultraviolet Radiation Effect

As shown by Figure 44, practically no
damage was evident due to the near
ultraviolet and vacuum ultraviolet
radiation, This sample, however only
received a total of 190 sun hours of
electromagnetic radiations,

3. Combined Environment Efféct

The effect of combined environment is
shown in Figure 45. It may be seen that
the combined damage is less than the
proton damage alone which is just the
opposite.of the results obtained by
Pinson(2) Synergistic effects were noted
in Pinson's tests in which the combined
damage was greater that the sum of the
individual environments.

v

g. Powdered Samples

Powdered samples of SiO_, LaZO , TiOZ,

Ale and MgO were all irradiated with

proto%s only for a total flux of 5 x 1015

p/cm® at a.rate of 5.5 x 1011 p/cm?/sec.

The effects are shown in Figures 46 through

50. The only powdered sample which had
significant damage is the Ti0,. As may be seen
from these figures, the other samples

exhibited little or no damage.

Non-In Situ Tests

Three exposures were conducted non-in situ using a 5 KW
mercury xenon lamp in the solar simulator. The results
of these tests are discussed in the following paragraphs
based upon the environmental parameters selected. The
curves which accompany show only changes in spectral
absorptance,
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SP 500 Zinc Oxide . . _—

Figure 51 shows the change in spectral absorptance
for compressed zinc oxide powder following exposure
to 10 Kev protons. Total flux was 2 x 10! protons/
cm? at 5.5 x 1011 p/cm?/sec. Sample temperature
was 298°K. Damage in this case was comparable to
that for ZnO/K_SiO_ in the same environment, from
earlier work, indicating that the damage for the
latter is occurring in the pigment.

Figure 52 shows the effect of a combined proton and
ultraviolet environment on zinc oxide. The
environment included a total 10 Kev proton flux

of 2 x 1015 p/cm? at 7.4 x 107 p/cm?/sec and 750

sun hours of near and vacuum UV at 10 solar
equivalents. The damage was substantially less

than for the sample exposed to protons only,
indicating proton damage bleaching by electromagnetic
radiation.

Figure 53 shows the effect of exposure to 750 sun
hours of near and vacuum UV at 10 solar equivalents.
Measured damage was very small and essentially
within the error of readings. Bleaching of damage
undoubtedly occurred upon return of the sample

to atmospheric conditions.

Vacuum Deposited Ag on Fused Silica

Figure 54 shows the effect of exposure to combined
10 Key protons (1.5 x 1017 p/crn2 at 5.5 x 101
p/cm”/sec) and 750 sun hours of near and vacuum
UV on vacuum deposited silver on fused silica.
Substantial damage incurred apparently from the
proton exposure. The peak in the induced
absorption band occurred at about 0.365 micron.

Figure 55 demonstrates the effect of 750 sun hours
of near and vacuum UV at 10 solar equivalents to
the vacuum deposited silver on fused silica.
Changes were essentially within the ‘errors in
measurements,
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VII,

CONCLUSIONS AND RECOMMENDATIONS

A,

Conclusions

The ZnO/potassium silicate is more stable in an
ultraviolet radiation environment than in a proton
environment. It is apparently very susceptible to
proton damage in the spectral range studied. A
threshold of approximately 10°° p/cm” causes
measurable damage with proportionate damages for
doses in excess of this level.

There was not evidence to indicate that synergistic
effects existed for the ZnO/K,SiO, material. In all
but one test, the combined environment tests
including both protons and ultraviolet radiation
produced less optical damage than the sum of the
damages due to the individual environments.

There is definite evidence that the rate at which
protons are applied to ZnO/K;SiO, has a definite
effect on the amount of damage to the material,
especially in the infrared portion of the spectrum.

The 1-11-9-13 ZnO/K,Si0O, demonstrated
comparable degradatlon ef?ects to the F-1-47-D
ZnO/K SiO;. The 1-11-9-13 did exhibit less
damage in the IR portion of the spectrum but had
a larger change in absorptance near .4 micron,

The Lanthanum Oxide/Potassium Silicate is more
susceptible to ultraviolet radiation damage and less
susceptible to proton damage. Increasing the total
protons by a factor of 5 did not increase the:
damage indicating a very good resistance to
protons. In contrast to the ZnO/KZSiO3, the

La 03 /K_SiO, shows a definite damage effect,
principalfy due to ultraviolet exposure. Of the two
batches of LaZO/KZSiO tested, the F~1-38 was the
least resistant to Ultraviolet damage.
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Combined environment tests including both protons
and ultraviolet radiation produced comparable
damage to the sum of the individual environments
for the Lanthanum Oxide/Potassium Silicate..

The TiO, /Silicone is highly susceptible to proton
damage and has very little susceptibility to ultra-
violet radiation. This effect also showed up in the
powdered samples since the TiO_, was the only
powder which showed significant damage due to
proton radiation.

Recommendations

1.

Further study should be conducted on the
influence of the electromagnetic spectral
distribution on the combined environment
synergistic effects.

The reciprocity effects of accelerated testing for
both electromagnetic and particulate radiation
should be investigated.

Temperature effects should be investigated for
materials studied in situ.

The effects of simulated space electron
radiation should be studied.

The coatings should be subjected to proton and
electron particle irradiation in order to establish
the relation between particle energy and optical
degradation.
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IX.

APPENDIX

Following are prints of dimensional information for items
fabricated under this contract.
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